3.428 \(\int \frac{\csc (e+f x)}{(b \sec (e+f x))^{3/2}} \, dx\)

Optimal. Leaf size=78 \[ \frac{\tan ^{-1}\left (\frac{\sqrt{b \sec (e+f x)}}{\sqrt{b}}\right )}{b^{3/2} f}-\frac{\tanh ^{-1}\left (\frac{\sqrt{b \sec (e+f x)}}{\sqrt{b}}\right )}{b^{3/2} f}+\frac{2}{b f \sqrt{b \sec (e+f x)}} \]

[Out]

ArcTan[Sqrt[b*Sec[e + f*x]]/Sqrt[b]]/(b^(3/2)*f) - ArcTanh[Sqrt[b*Sec[e + f*x]]/Sqrt[b]]/(b^(3/2)*f) + 2/(b*f*
Sqrt[b*Sec[e + f*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.0543373, antiderivative size = 78, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.316, Rules used = {2622, 325, 329, 298, 203, 206} \[ \frac{\tan ^{-1}\left (\frac{\sqrt{b \sec (e+f x)}}{\sqrt{b}}\right )}{b^{3/2} f}-\frac{\tanh ^{-1}\left (\frac{\sqrt{b \sec (e+f x)}}{\sqrt{b}}\right )}{b^{3/2} f}+\frac{2}{b f \sqrt{b \sec (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[Csc[e + f*x]/(b*Sec[e + f*x])^(3/2),x]

[Out]

ArcTan[Sqrt[b*Sec[e + f*x]]/Sqrt[b]]/(b^(3/2)*f) - ArcTanh[Sqrt[b*Sec[e + f*x]]/Sqrt[b]]/(b^(3/2)*f) + 2/(b*f*
Sqrt[b*Sec[e + f*x]])

Rule 2622

Int[csc[(e_.) + (f_.)*(x_)]^(n_.)*((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Dist[1/(f*a^n), Subst[Int
[x^(m + n - 1)/(-1 + x^2/a^2)^((n + 1)/2), x], x, a*Sec[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n
 + 1)/2] &&  !(IntegerQ[(m + 1)/2] && LtQ[0, m, n])

Rule 325

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a*
c*(m + 1)), x] - Dist[(b*(m + n*(p + 1) + 1))/(a*c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 298

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b),
2]]}, Dist[s/(2*b), Int[1/(r + s*x^2), x], x] - Dist[s/(2*b), Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &
&  !GtQ[a/b, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\csc (e+f x)}{(b \sec (e+f x))^{3/2}} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{1}{x^{3/2} \left (-1+\frac{x^2}{b^2}\right )} \, dx,x,b \sec (e+f x)\right )}{b f}\\ &=\frac{2}{b f \sqrt{b \sec (e+f x)}}+\frac{\operatorname{Subst}\left (\int \frac{\sqrt{x}}{-1+\frac{x^2}{b^2}} \, dx,x,b \sec (e+f x)\right )}{b^3 f}\\ &=\frac{2}{b f \sqrt{b \sec (e+f x)}}+\frac{2 \operatorname{Subst}\left (\int \frac{x^2}{-1+\frac{x^4}{b^2}} \, dx,x,\sqrt{b \sec (e+f x)}\right )}{b^3 f}\\ &=\frac{2}{b f \sqrt{b \sec (e+f x)}}-\frac{\operatorname{Subst}\left (\int \frac{1}{b-x^2} \, dx,x,\sqrt{b \sec (e+f x)}\right )}{b f}+\frac{\operatorname{Subst}\left (\int \frac{1}{b+x^2} \, dx,x,\sqrt{b \sec (e+f x)}\right )}{b f}\\ &=\frac{\tan ^{-1}\left (\frac{\sqrt{b \sec (e+f x)}}{\sqrt{b}}\right )}{b^{3/2} f}-\frac{\tanh ^{-1}\left (\frac{\sqrt{b \sec (e+f x)}}{\sqrt{b}}\right )}{b^{3/2} f}+\frac{2}{b f \sqrt{b \sec (e+f x)}}\\ \end{align*}

Mathematica [A]  time = 1.96262, size = 89, normalized size = 1.14 \[ \frac{\sqrt{\sec (e+f x)} \left (\log \left (1-\sqrt{\sec (e+f x)}\right )-\log \left (\sqrt{\sec (e+f x)}+1\right )\right )+2 \sqrt{\sec (e+f x)} \tan ^{-1}\left (\sqrt{\sec (e+f x)}\right )+4}{2 b f \sqrt{b \sec (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Csc[e + f*x]/(b*Sec[e + f*x])^(3/2),x]

[Out]

(4 + 2*ArcTan[Sqrt[Sec[e + f*x]]]*Sqrt[Sec[e + f*x]] + (Log[1 - Sqrt[Sec[e + f*x]]] - Log[1 + Sqrt[Sec[e + f*x
]]])*Sqrt[Sec[e + f*x]])/(2*b*f*Sqrt[b*Sec[e + f*x]])

________________________________________________________________________________________

Maple [B]  time = 0.108, size = 221, normalized size = 2.8 \begin{align*} -{\frac{-1+\cos \left ( fx+e \right ) }{2\,f\cos \left ( fx+e \right ) \left ( \sin \left ( fx+e \right ) \right ) ^{2}} \left ( 4\,\cos \left ( fx+e \right ) \sqrt{-{\frac{\cos \left ( fx+e \right ) }{ \left ( \cos \left ( fx+e \right ) +1 \right ) ^{2}}}}-\ln \left ( -{\frac{1}{ \left ( \sin \left ( fx+e \right ) \right ) ^{2}} \left ( 2\, \left ( \cos \left ( fx+e \right ) \right ) ^{2}\sqrt{-{\frac{\cos \left ( fx+e \right ) }{ \left ( \cos \left ( fx+e \right ) +1 \right ) ^{2}}}}- \left ( \cos \left ( fx+e \right ) \right ) ^{2}+2\,\cos \left ( fx+e \right ) -2\,\sqrt{-{\frac{\cos \left ( fx+e \right ) }{ \left ( \cos \left ( fx+e \right ) +1 \right ) ^{2}}}}-1 \right ) } \right ) +\arctan \left ({\frac{1}{2}{\frac{1}{\sqrt{-{\frac{\cos \left ( fx+e \right ) }{ \left ( \cos \left ( fx+e \right ) +1 \right ) ^{2}}}}}}} \right ) +4\,\sqrt{-{\frac{\cos \left ( fx+e \right ) }{ \left ( \cos \left ( fx+e \right ) +1 \right ) ^{2}}}} \right ) \left ({\frac{b}{\cos \left ( fx+e \right ) }} \right ) ^{-{\frac{3}{2}}}{\frac{1}{\sqrt{-{\frac{\cos \left ( fx+e \right ) }{ \left ( \cos \left ( fx+e \right ) +1 \right ) ^{2}}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csc(f*x+e)/(b*sec(f*x+e))^(3/2),x)

[Out]

-1/2/f*(-1+cos(f*x+e))*(4*cos(f*x+e)*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-ln(-(2*cos(f*x+e)^2*(-cos(f*x+e)/(co
s(f*x+e)+1)^2)^(1/2)-cos(f*x+e)^2+2*cos(f*x+e)-2*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-1)/sin(f*x+e)^2)+arctan(
1/2/(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2))+4*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2))/cos(f*x+e)/sin(f*x+e)^2/(b/c
os(f*x+e))^(3/2)/(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)/(b*sec(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 4.07057, size = 813, normalized size = 10.42 \begin{align*} \left [\frac{2 \, \sqrt{-b} \arctan \left (\frac{2 \, \sqrt{-b} \sqrt{\frac{b}{\cos \left (f x + e\right )}} \cos \left (f x + e\right )}{b \cos \left (f x + e\right ) + b}\right ) + 8 \, \sqrt{\frac{b}{\cos \left (f x + e\right )}} \cos \left (f x + e\right ) - \sqrt{-b} \log \left (-\frac{b \cos \left (f x + e\right )^{2} + 4 \,{\left (\cos \left (f x + e\right )^{2} - \cos \left (f x + e\right )\right )} \sqrt{-b} \sqrt{\frac{b}{\cos \left (f x + e\right )}} - 6 \, b \cos \left (f x + e\right ) + b}{\cos \left (f x + e\right )^{2} + 2 \, \cos \left (f x + e\right ) + 1}\right )}{4 \, b^{2} f}, \frac{2 \, \sqrt{b} \arctan \left (\frac{2 \, \sqrt{b} \sqrt{\frac{b}{\cos \left (f x + e\right )}} \cos \left (f x + e\right )}{b \cos \left (f x + e\right ) - b}\right ) + 8 \, \sqrt{\frac{b}{\cos \left (f x + e\right )}} \cos \left (f x + e\right ) + \sqrt{b} \log \left (-\frac{b \cos \left (f x + e\right )^{2} - 4 \,{\left (\cos \left (f x + e\right )^{2} + \cos \left (f x + e\right )\right )} \sqrt{b} \sqrt{\frac{b}{\cos \left (f x + e\right )}} + 6 \, b \cos \left (f x + e\right ) + b}{\cos \left (f x + e\right )^{2} - 2 \, \cos \left (f x + e\right ) + 1}\right )}{4 \, b^{2} f}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)/(b*sec(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

[1/4*(2*sqrt(-b)*arctan(2*sqrt(-b)*sqrt(b/cos(f*x + e))*cos(f*x + e)/(b*cos(f*x + e) + b)) + 8*sqrt(b/cos(f*x
+ e))*cos(f*x + e) - sqrt(-b)*log(-(b*cos(f*x + e)^2 + 4*(cos(f*x + e)^2 - cos(f*x + e))*sqrt(-b)*sqrt(b/cos(f
*x + e)) - 6*b*cos(f*x + e) + b)/(cos(f*x + e)^2 + 2*cos(f*x + e) + 1)))/(b^2*f), 1/4*(2*sqrt(b)*arctan(2*sqrt
(b)*sqrt(b/cos(f*x + e))*cos(f*x + e)/(b*cos(f*x + e) - b)) + 8*sqrt(b/cos(f*x + e))*cos(f*x + e) + sqrt(b)*lo
g(-(b*cos(f*x + e)^2 - 4*(cos(f*x + e)^2 + cos(f*x + e))*sqrt(b)*sqrt(b/cos(f*x + e)) + 6*b*cos(f*x + e) + b)/
(cos(f*x + e)^2 - 2*cos(f*x + e) + 1)))/(b^2*f)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\csc{\left (e + f x \right )}}{\left (b \sec{\left (e + f x \right )}\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)/(b*sec(f*x+e))**(3/2),x)

[Out]

Integral(csc(e + f*x)/(b*sec(e + f*x))**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\csc \left (f x + e\right )}{\left (b \sec \left (f x + e\right )\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)/(b*sec(f*x+e))^(3/2),x, algorithm="giac")

[Out]

integrate(csc(f*x + e)/(b*sec(f*x + e))^(3/2), x)